ORIGINAL ARTICLE

CODAP: A multidisciplinary consensus among Portuguese experts on the definition, detection and management of atherogenic dyslipidemia?

Alberto Mello e Silvaa,b,???, Carlos Aguiarc, João Sequeira Duartea,b, Luciana Coutob,d, Manuel Teixeira Veríssimob,e, Pedro Marques da Silvab,f

a Hospital Ega Moniz, Centro Hospitalar Lisboa Ocidental, Lisboa, Portugal
b Sociedade Portuguesa de Aterosclerose, Lisboa, Portugal
c Hospital Santa Cruz, Centro Hospitalar Lisboa Ocidental, Lisboa, Portugal
d MEDCIDS-Department of Community Medicine, Information and Health Decision Sciences, Faculty of Medicine, Universidade do Porto, Porto, Portugal
e Faculdade de Medicina, Universidade de Coimbra, Coimbra, Portugal
f Núcleo de Investigação Arterial, Medicina 4, Hospital de Santa Marta, Centro Hospitalar de Lisboa Central, Lisboa, Portugal

Received 17 September 2018; accepted 24 March 2019
Available online 23 November 2019

KEYWORDS
Atherogenic dyslipidemia;
Low-density lipoprotein cholesterol;
Non-high-density lipoprotein cholesterol;
Triglycerides;
Fenofibrate;
Residual cardiovascular risk

Abstract

Introduction and Aims: Atherogenic dyslipidemia is an important contributor to residual cardiovascular (CV) risk, but it is underdiagnosed and undertreated. This study aimed to assess the opinion of Portuguese experts to generate a consensus concerning the diagnosis and treatment of atherogenic dyslipidemia, as well as to contribute toward standardization of clinical practice in this disorder.

Methods: The study consisted in the application of a questionnaire to an expert panel, following a modified Delphi methodology.

Results: The majority (88.4\%) of the proposed items were found to be consensual. The expert panel recognized the importance of the atherogenic dyslipidemia phenotype, the role played by low-density lipoprotein cholesterol and non-high-density lipoprotein cholesterol as risk markers and therapeutic targets, the choice of statins as first-line lipid-lowering drugs, and the value of associating statins with fenofibrate as a means to reduce residual CV risk. However, the role played by triglycerides in CV risk and the therapeutic value of fibrates lacked consensus. Taking into consideration the state of the art and the opinions expressed in this study, the scientific
Introduction

Despite substantial improvements in recent decades, according to the Organization for Economic Co-operation and Development (OECD), cardiovascular disease (CVD) remains the leading cause of death in most OECD member states, where it accounted for over a third of all deaths in 2015.\(^1\) In Portugal, diseases of the circulatory system were responsible for 32,805 deaths (29.6% of total mortality) in 2016, while the number of years of potential life lost was 47,923, corresponding to 546.6 per 100,000 population and a mean number of years of life lost of 10.8.\(^2\)

The risk factors for CVD are well known. They include age, gender, ethnicity, family history, smoking, dyslipidemia, hypertension, obesity and lack of exercise.\(^3,4\) Some of these factors are modifiable through lifestyle changes and appropriate medical therapy. However, in some cases risk for CVD persists. This residual risk is defined as the risk that remains after therapeutic goals have been achieved for low-density lipoprotein cholesterol (LDL-C), blood pressure and blood glucose.\(^5\)

Atherogenic dyslipidemia, characterized by elevated levels of triglycerides (TG), very-low-density lipoprotein cholesterol (VLDL-C) and small dense low-density lipoprotein (LDL) particles and low levels of high-density lipoprotein cholesterol (HDL-C), contributes significantly to residual cardiovascular (CV) risk.\(^5\) Several studies have shown that the imbalance between elevated TG (which are proatherogenic, especially in the form of cholesterol-rich remnants) and reduced HDL-C increases CV risk independently of LDL-C levels.\(^5,6,7\) Detection and treatment of atherogenic dyslipidemia thus has an important role in the control of residual CV risk, particularly in groups in which this form of dyslipidemia is relatively common, such as patients with metabolic syndrome, obesity, or diabetes.

In epidemiological terms, the prevalence of atherogenic dyslipidemia is concerning. The European Study on Cardiovascular Risk Prevention and Management in Usual Daily
Practice (EURIKA) enrolled 7641 patients with at least one CV risk factor but no history of CVD. Of this population, 20.8% had high TG (=2.3 mmol/l or 200 mg/dl), 22.1% had low HDL-C (men: <1.0 mmol/l or 40 mg/dl; women: <1.3 mmol/l or 50 mg/dl), and 9.9% had both high TG and low HDL-C. Even so, approximately 35% of these patients were not taking any form of lipid-lowering therapy. The Portuguese arm of the Dyslipidemia International Study (DYSIS), which assessed the prevalence of persistent lipid abnormalities in patients receiving statins, included 916 patients, of whom 39.2% had elevated TG (>1.7 mmol/l or 150 mg/dl) and 22.2% had low HDL-C (<1.0 mmol/l or 40 mg/dl in men and <1.2 mmol/l or 46 mg/dl in women). In the subsequent DYSIS II, which included 10661 patients from 18 countries with stable coronary artery disease or acute coronary syndrome, median (interquartile range [IQR]) HDL-C levels among those taking lipid-lowering therapy were 42.0 (35.0-51.0) and 39.0 (33.0-47.0) mg/dl, while median TG levels were 120.0 (89.0-164.0) and 127.0 (94.0-177.0) mg/dl, respectively.

Taken together, these results indicate a high prevalence of lipid abnormalities consistent with the phenotype of atherogenic dyslipidemia and suggest that the condition is both underdiagnosed and undertreated. Bearing in mind its importance in residual CV risk, it is urgent to invest in informing and educating health professionals, in order to improve the detection, monitoring and treatment of this disorder.

The aims of the Consenso Dyslipidemia Aterogénica Portugal (CODAP, Consensus on Atherogenic Dyslipidemia in Portugal) study were to assess the opinion of Portuguese experts in order to generate a consensus concerning the definition, diagnosis and treatment of atherogenic dyslipidemia, and to contribute toward standardization of clinical practice in this disorder.

Methods

Study design

The study consisted in the application of a questionnaire to an expert panel, following a modified Delphi methodology. Briefly, in this methodology, a survey is developed by a scientific committee and then distributed to a panel of experts invited to participate in the study. The initial responses (round 1) are analyzed by the committee and those questions on which there was no consensus are reformulated and returned to the panel together with the responses to the first round. This process is repeated until an agreed percentage of consensus is achieved.

CODAP took place in four stages (Figure 1): (1) formation of the scientific committee and preparation of a questionnaire on different aspects of atherogenic dyslipidemia; (2) selection and invitation of members of the expert panel, made up of specialists in different areas of medicine; (3) responses to the survey by the expert panel in two rounds; and (4) analysis and discussion of the final results by the scientific committee. The selection of experts to be invited to form the panel was carried out in such a way as to ensure the greatest possible representativeness of physicians involved in the detection and treatment of atherogenic dyslipidemia, from four different specialties: cardiology, internal medicine, family and general medicine, and endocrinology. The invited physicians were carefully selected from lists of members of the Portuguese Society of Atherosclerosis and other relevant medical societies, all of whom were acknowledged experts in the field. In order to ensure equal representativeness in all specialties, a similar number of invitations (10-12) were sent to all groups, with the exception of endocrinology, which received 17 invitations because this specialty includes a subgroup of physicians with a particular interest in diabetology. The questionnaire was made available on an online platform and the responses were returned electronically.

Preparation of the questionnaire and definition of consensus

The questionnaire consisted of 43 statements on different aspects of atherogenic dyslipidemia: three on its definition, three on epidemiological aspects, seven on the impact of atherogenic dyslipidemia on CV risk, eight on methods of detection and diagnosis, seven on therapeutic goals, and 15 on treatment. These items were assessed by the expert panel on a Likert scale from 1 to 9 (1: completely disagree; 9: completely agree) and each option could be supplemented by comments entered into a free-text field. Consensus was defined as fulfillment of the following conditions: (1) the median of responses was between 1 and 3 (consensus in disagreement) or 7 and 9 (consensus in agreement); (2) the IQR of the median was 4 or less; and (3) the number of panel members voting outside the consensus range (1-3 or 7-9) was less than a third of the total votes.

Results

In the first stage, 50 physicians were invited to participate in the study: 12 specialists in cardiology, 11 in internal medicine, 10 in family and general medicine, and 17 in endocrinology. Thirty-four responses were obtained in the first round, a participation rate of 68.0% (Figure 1). Participation rates by specialty were 58.3% in cardiology, 90.9% in internal medicine, 80.0% in family and general medicine, and 52.9% in endocrinology. After the second and final round 33 responses were obtained, a final participation rate of 66.0% (Figure 1). The one panel member who did not respond to the second round was a specialist in cardiology, which thus had a final participation rate of 50.0%.

Of the 43 items on the questionnaire, there was consensus in agreement on 36 (83.7%) after the first round (Figure 1 and Table 1). Of the seven non-consensual items, three were reformulated and four were unchanged; two of the latter were accompanied by an explicit request for panel members to justify their response.

After the second round, consensus was reached on two of the seven items that were non-consensual in round 1 (Table 1): items III.1 and VI.13. The final rate of consensus was thus 88.4% (Figure 1 and Table 1), with consensus not being achieved on five items: III.3, IV.7, V.1, VI.9 and VI.14.

Based on the state of the art and on the responses to the questionnaire, the CODAP scientific committee developed a treatment algorithm for patients at high or very high risk for CV events, with the aim of standardizing clinical prac-
Table 1 Results of the study questionnaire.

<table>
<thead>
<tr>
<th>Item</th>
<th>Median</th>
<th>IQR</th>
<th>% outside</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Definition</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I.1. Atherogenic dyslipidemia is an abnormality of lipid metabolism that is related to other lipid disorders including type 2 diabetes, obesity, metabolic syndrome and insulin resistance.</td>
<td>9</td>
<td>8-9</td>
<td>5.71%</td>
<td>Consensus (round 1)</td>
</tr>
<tr>
<td>I.2. Atherogenic dyslipidemia is defined as a combination of low HDL-C (<40 mg/dl [<1.0 mmol/l] and <50 mg/dl [<1.3 mmol/l] in men and women, respectively), elevated triglycerides (>150 mg/dl or >1.7 mmol/l), and an increased proportion of small dense LDL particles, in high-risk patients.</td>
<td>9</td>
<td>8-9</td>
<td>5.71%</td>
<td>Consensus (round 1)</td>
</tr>
<tr>
<td>I.3. The higher the triglyceride level, the higher the proportion of small dense LDL particles.</td>
<td>8</td>
<td>7-8</td>
<td>22.86%</td>
<td>Consensus (round 1)</td>
</tr>
<tr>
<td>II. Epidemiology</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II.1. In Portugal, atherogenic dyslipidemia is underdiagnosed and undertreated.</td>
<td>8</td>
<td>7-9</td>
<td>20.00%</td>
<td>Consensus (round 1)</td>
</tr>
<tr>
<td>II.2. Atherogenic dyslipidemia is common in patients with type 2 diabetes, metabolic syndrome, obesity, chronic kidney disease and certain autoimmune diseases.</td>
<td>8</td>
<td>8-9</td>
<td>5.71%</td>
<td>Consensus (round 1)</td>
</tr>
<tr>
<td>II.3. Residual cardiovascular risk is defined as the risk for cardiovascular events that persists in patients who have achieved therapeutic goals for LDL-C, blood pressure and blood glucose, in accordance with current standard treatment.</td>
<td>8</td>
<td>7-9</td>
<td>2.86%</td>
<td>Consensus (round 1)</td>
</tr>
<tr>
<td>III. Cardiovascular risk</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>III.1. In patients with atherogenic dyslipidemia, non-HDL-C is a better risk marker than LDL-C.</td>
<td>8</td>
<td>6-8</td>
<td>28.13%</td>
<td>Consensus (round 2)</td>
</tr>
<tr>
<td>III.2. Patients with atherogenic dyslipidemia under statin therapy still have significant cardiovascular risk even when LDL-C is at target levels.</td>
<td>8</td>
<td>6-8</td>
<td>25.71%</td>
<td>Consensus (round 1)</td>
</tr>
<tr>
<td>III.3. Reducing triglycerides improves cardiovascular risk in patients with atherogenic dyslipidemia and controlled LDL-C levels.</td>
<td>7</td>
<td>5-8</td>
<td>37.50%</td>
<td>No consensus</td>
</tr>
<tr>
<td>III.4. Reducing non-HDL-C to levels no more than 30 mg/dl higher than the target LDL-C level improves cardiovascular risk in patients with atherogenic dyslipidemia.</td>
<td>7</td>
<td>7-8</td>
<td>22.86%</td>
<td>Consensus (round 1)</td>
</tr>
<tr>
<td>III.5. Non-HDL-C levels should be measured to determine cardiovascular risk in diabetic patients with elevated triglycerides.</td>
<td>8</td>
<td>7-9</td>
<td>14.29%</td>
<td>Consensus (round 1)</td>
</tr>
<tr>
<td>III.6. Elevated triglycerides, as markers of triglyceride-rich lipoproteins such as remnant LDL, contribute to the pathogenesis of ischemic heart disease, as shown by recent genetic studies.</td>
<td>7</td>
<td>6-8</td>
<td>31.43%</td>
<td>Consensus (round 1)</td>
</tr>
<tr>
<td>III.7. The cholesterol content of remnant particles appears to be a more important causal factor in cardiovascular risk than triglycerides.</td>
<td>7</td>
<td>7-8</td>
<td>17.14%</td>
<td>Consensus (round 1)</td>
</tr>
<tr>
<td>IV. Detection and diagnosis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV.1. A high percentage of patients with atherogenic dyslipidemia under lipid-lowering therapy do not achieve the recommended therapeutic goals.</td>
<td>8</td>
<td>7-9</td>
<td>8.57%</td>
<td>Consensus (round 1)</td>
</tr>
<tr>
<td>IV.2. All men aged over 40 years and all women aged over 50 years or post-menopausal should be screened for dyslipidemia, particularly when they have other vascular risk factors.</td>
<td>9</td>
<td>8-9</td>
<td>8.57%</td>
<td>Consensus (round 1)</td>
</tr>
<tr>
<td>IV.3. Overall cardiovascular risk should be estimated (using a risk assessment tool such as SCORE) in all asymptomatic individuals aged over 40 years with no evidence of cardiovascular disease, diabetes, chronic kidney disease or familial hypercholesterolemia.</td>
<td>9</td>
<td>8-9</td>
<td>14.29%</td>
<td>Consensus (round 1)</td>
</tr>
<tr>
<td>Item</td>
<td>Median</td>
<td>IQR</td>
<td>% outside</td>
<td>Result</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>-----</td>
<td>-----------</td>
<td>--------</td>
</tr>
<tr>
<td>IV.4. LDL-C levels should be used in screening, risk assessment, diagnosis and treatment.</td>
<td>8</td>
<td>7-9</td>
<td>11.43%</td>
<td>Consensus (round 1)</td>
</tr>
<tr>
<td>IV.5. Non-HDL-C should be considered a risk marker and should be measured, particularly in individuals with elevated triglycerides.</td>
<td>8</td>
<td>7-9</td>
<td>17.14%</td>
<td>Consensus (round 1)</td>
</tr>
<tr>
<td>IV.6. HDL-C levels should be quantified before beginning treatment.</td>
<td>8</td>
<td>7-9</td>
<td>20.00%</td>
<td>Consensus (round 1)</td>
</tr>
<tr>
<td>IV.7. Triglyceride levels should be taken into account in diagnosis and therapeutic decision-making.</td>
<td>7</td>
<td>6-8</td>
<td>33.33%</td>
<td>No consensus</td>
</tr>
<tr>
<td>IV.8. ApoB levels can be used as an alternative to non-HDL-C.</td>
<td>7</td>
<td>6-8</td>
<td>31.43%</td>
<td>Consensus (round 1)</td>
</tr>
<tr>
<td>V. Therapeutic goals</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V.1. The therapeutic goal should be an overall reduction in lipid levels rather than specific values of the different components of the lipid profile.</td>
<td>5</td>
<td>2-7</td>
<td>62.50%</td>
<td>No consensus</td>
</tr>
<tr>
<td>V.2. In patients at very high cardiovascular risk, the goal should be LDL-C <70 mg/dl (1.8 mmol/l) or a reduction of at least 50% if baseline LDL-C is between 70 and 135 mg/dl.</td>
<td>9</td>
<td>8-9</td>
<td>2.86%</td>
<td>Consensus (round 1)</td>
</tr>
<tr>
<td>V.3. In patients at high cardiovascular risk, the goal should be LDL-C <100 mg/dl (2.6 mmol/l) or a reduction of at least 50% if baseline LDL-C is between 100 and 200 mg/dl.</td>
<td>9</td>
<td>8-9</td>
<td>5.71%</td>
<td>Consensus (round 1)</td>
</tr>
<tr>
<td>V.4. In patients at moderate or low cardiovascular risk, the goal should be LDL-C <115 mg/dl (3.0 mmol/l).</td>
<td>9</td>
<td>7-9</td>
<td>0.00%</td>
<td>Consensus (round 1)</td>
</tr>
<tr>
<td>V.5. Pharmacological treatment of hypertriglyceridemia should be considered in high-risk patients with triglycerides >200 mg/dl (2.3 mmol/l).</td>
<td>8</td>
<td>7-9</td>
<td>20.00%</td>
<td>Consensus (round 1)</td>
</tr>
<tr>
<td>V.6. A triglyceride level 500 mg/dl is associated with a risk of pancreatitis, and pharmacological treatment to reduce triglyceridemia is required.</td>
<td>9</td>
<td>8-9</td>
<td>5.71%</td>
<td>Consensus (round 1)</td>
</tr>
<tr>
<td>V.7. The therapeutic goal for non-HDL-C is easily calculated by adding 30 g/dl (0.8 mmol/l) to the therapeutic goal for LDL-C.</td>
<td>9</td>
<td>7-9</td>
<td>11.43%</td>
<td>Consensus (round 1)</td>
</tr>
<tr>
<td>VI. Treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VI.1. Lifestyle changes such as exercise and a healthy diet are an essential component of treatment of dyslipidemia, particularly atherogenic dyslipidemia.</td>
<td>9</td>
<td>9-9</td>
<td>0.00%</td>
<td>Consensus (round 1)</td>
</tr>
<tr>
<td>VI.2. A multifactorial approach is recommended in patients with atherogenic dyslipidemia and type 2 diabetes, taking into account not only lipid profile but also control of blood pressure and of blood glucose and HbA1c levels.</td>
<td>9</td>
<td>9-9</td>
<td>0.00%</td>
<td>Consensus (round 1)</td>
</tr>
<tr>
<td>VI.3. Family history should be taken into account.</td>
<td>9</td>
<td>8-9</td>
<td>5.71%</td>
<td>Consensus (round 1)</td>
</tr>
<tr>
<td>VI.4. Statins are the first-line lipid-lowering therapy in patients with dyslipidemia and at high or very high cardiovascular risk.</td>
<td>9</td>
<td>9-9</td>
<td>0.00%</td>
<td>Consensus (round 1)</td>
</tr>
<tr>
<td>VI.5. The statin and its dosage should be selected according to the extent of LDL-C reduction required to attain the therapeutic goal.</td>
<td>9</td>
<td>9-9</td>
<td>2.86%</td>
<td>Consensus (round 1)</td>
</tr>
<tr>
<td>VI.6. Statins should be prescribed up to the maximum recommended or tolerated dose in order to attain the therapeutic goal.</td>
<td>8</td>
<td>7-9</td>
<td>17.14%</td>
<td>Consensus (round 1)</td>
</tr>
<tr>
<td>VI.7. Ezetimibe can be combined with statins for greater reduction in LDL-C levels if the target level has not been achieved using statin monotherapy.</td>
<td>9</td>
<td>8-9</td>
<td>2.86%</td>
<td>Consensus (round 1)</td>
</tr>
<tr>
<td>VI.8. In the pharmacological treatment of hypertriglyceridemia, fibrates are indicated to reduce triglyceride levels.</td>
<td>8</td>
<td>7-9</td>
<td>20.00%</td>
<td>Consensus (round 1)</td>
</tr>
<tr>
<td>Item</td>
<td>Median</td>
<td>IQR</td>
<td>% outside</td>
<td>Result</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>------</td>
<td>-----------</td>
<td>----------------</td>
</tr>
<tr>
<td>VI.9</td>
<td>7</td>
<td>5-9</td>
<td>43.75%</td>
<td>No consensus</td>
</tr>
<tr>
<td>VI.10</td>
<td>8</td>
<td>6-8</td>
<td>28.57%</td>
<td>Consensus (round 1)</td>
</tr>
<tr>
<td>VI.11</td>
<td>8</td>
<td>7-9</td>
<td>17.14%</td>
<td>Consensus (round 1)</td>
</tr>
<tr>
<td>VI.12</td>
<td>8</td>
<td>7-8</td>
<td>22.86%</td>
<td>Consensus (round 1)</td>
</tr>
<tr>
<td>VI.13</td>
<td>8</td>
<td>7-9</td>
<td>22.86%</td>
<td>Consensus (round 1)</td>
</tr>
<tr>
<td>VI.14</td>
<td>7</td>
<td>6-8</td>
<td>40.63%</td>
<td>No consensus</td>
</tr>
<tr>
<td>VI.15</td>
<td>8</td>
<td>6-9</td>
<td>25.00%</td>
<td>Consensus (round 2)</td>
</tr>
</tbody>
</table>

ApoB: apolipoprotein B; HbA1c: glycated hemoglobin; HDL-C: high-density lipoprotein cholesterol; IQR: interquartile range; % outside: percentage of responses outside the ranges 1-3, 4-6 or 7-9 (according to the median); LDL: low-density lipoprotein; LDL-C: low-density lipoprotein cholesterol; SCORE: Systematic COronary Risk Evaluation.
tice in the context of atherogenic dyslipidemia (Figure 2). According to this algorithm, after normalization of LDL-C levels in a patient medicated with statins and with a healthy lifestyle, the possibility of atherogenic dyslipidemia should be assessed. If its presence is confirmed, the scientific committee consider that the best currently available therapy is to associate fenofibrate with a statin.

Discussion

The CODAP study shows that the opinions of Portuguese experts on the definition, importance, diagnosis and treatment of atherogenic dyslipidemia are largely consensual, with agreement on 88.4% of the items in the questionnaire. This figure is close to that reported in a similar study conducted in Spain, in which the rate of agreement was 87.4%. However, participation in the study was lower than expected, only 66% of responses to invitations being received from the two rounds. Although initially we sought to have the panel members distributed evenly among the specialties with the greatest clinical experience and involvement in the problems under study - cardiology, internal medicine, family and general medicine, and endocrinology (the latter including a subgroup of physicians with a particular interest in diabetology) - some specialties were considerably better represented in the final results than others. This limitation is not unique to this study, but is inherent to any methodology based on responses to a questionnaire: it is impossible at the outset to guarantee a specific number of responses or how they will be distributed among the population surveyed. Nevertheless, we consider that the responses obtained in our study are representative of physicians with an interest in the subject, whatever their specialty, and that the analysis and dissemination of these responses accomplishes the study's initial aims.

Among the consensual subject areas, the best agreement was found for those related to the definition and epidemiology of atherogenic dyslipidemia, which were the only ones on which consensus was reached for all items. The lipid profile-based definition of atherogenic dyslipidemia -
Furthermore, the importance of correct causes of secondary dyslipidemia cannot be overstated. With the patient at high or very high CV risk, it is crucial to prescribe a statin to achieve the target LDL-C level. This is particularly true for patients with atherogenic dyslipidemia, as defined in the European Society of Cardiology/European Atherosclerosis Society guidelines.

- **Therapeutic target for LDL-C achieved?**
 - Yes
 - Correct causes of secondary dyslipidemia
 - No
 - Assess treatment adherence
 - Change statin and/or dosage
 - Add ezetimibe
 - Add PCSK9 inhibitor

Figure 2: Treatment algorithm for patients with atherogenic dyslipidemia. AD: atherogenic dyslipidemia; CVD: cardiovascular disease; HDL-C: high-density lipoprotein cholesterol; LDL-C: low-density lipoprotein cholesterol; PCSK9: proprotein convertase subtilisin/kexin type 9.

Prevalent in patients with obesity, metabolic syndrome, type 2 diabetes and other metabolic disorders, and autoimmune diseases. Furthermore, 80% of participants agreed (in the 7–9 range) that atherogenic dyslipidemia is underdiagnosed and undertreated; this has been increasingly recognized in recent studies and appears to be true worldwide.

There was consensus among the expert panel on the importance of LDL-C levels in screening, CV risk assessment, diagnosis and treatment, and on the need to formulate therapeutic goals for LDL-C that are personalized according to the individual patient’s risk level, as recommended in the clinical guidelines published jointly by the European Society of Cardiology (ESC) and the European Atherosclerosis Society (EAS), among others. However, notwithstanding the undoubted importance of LDL-C in this context, the panel
recognized the existence of residual risk even after therapeu-
tic goals have been achieved for LDL-C. This realization
is in line with the findings of the Residual Risk Reduction Ini-
tiative (R3I), which recently reviewed its first publications
and, based on an extensive literature review, highlighted
the imbalance caused by elevated TG and low HDL-C as a
key contributor to residual CV risk.6,20 Even optimal medi-
tical therapy including proprotein convertase subtilisin/kexin
type 9 (PCSK9) inhibitors, new drugs that significantly reduce
LDL-C,21 appears to be unable to completely eliminate CV
risk.

In line with their recognition of residual risk, the panel
identified non-HDL-C as an important marker of CV risk,
with 71.9% of members agreeing (in the 7-9 range) that
non-HDL-C is a better risk marker than LDL-C in patients
with atherogenic dyslipidemia. This view is fully supported
by the literature, in which non-HDL-C, defined as the sum
of LDL-C and remnant cholesterol (made up of VLDL-C and
intermediate-density lipoprotein cholesterol [IDL-C]),
is considered to be a more atherogenic cholesterol frac-
tion than LDL-C,15,22–24 and is increasingly recognized as such
by the medical community. Non-HDL-C now has an impor-
tant place in the clinical guidelines: while the ESC/EAS,
the International Atherosclerosis Society, and the Canadian
Cardiovascular Society guidelines define non-HDL-C as a sec-
ondary or alternative target to LDL-C,19,25,26 the US National
Lipid Association and the joint guidelines of the American
Association of Clinical Endocrinologists and the American
College of Endocrinology set parallel targets for LDL-C and
non-HDL-C, and the UK National Institute for Health and Care
Excellence sets non-HDL-C as the single therapeutic goal.29
Similarly, a recent consensus document developed by mem-
ers of the main Portuguese medical societies states that
non-HDL-C should be considered a better risk indicator than
LDL-C, and should be treated as a secondary therapeutic tar-
get in the clinical management of dyslipidemia, especially
in situations such as hypertriglyceridemia.30 It should also
be noted that the expert panel in the CODAP study consid-
ered that apolipoprotein B (ApoB) levels can be taken as an
alternative to non-HDL-C. Although they are not the same,
non-HDL-C levels are closely related to those of ApoB, which
explains their perceived equivalence and the fact that many
of the above-mentioned guidelines also include therapeutic
goals for ApoB. However, non-HDL-C is easily measured and
is well known to all health professionals, which makes it a
more attractive therapeutic target.

Curiously, the importance of TG in CV risk was not consen-
sual among panel members. It had been assumed for decades
that TG do not have an important role in the development of
CVD. However, recent studies have demonstrated that high
levels of TG and remnant cholesterol contribute directly to
the pathophysiology of ischemic heart disease.31,32 It is now
known that a TG level of 200–600 mg/dl (2.3–6.8 mmol/l) in-
dicates an accumulation of highly atherogenic TG-rich
remnant cholesterol.33,34 Three clinical trials, recently com-
pleted or under way, will help determine whether elevated
TG contribute significantly to residual CV risk. In two of
these trials omega-3 fatty acids (purified omega-3 fatty acids
or ethyl esters of eicosapentaenoic acid) are used to lower
TG,35,36 while the third uses a new fibrate, peremfibrate.37

It should be noted that, while the panel recognized the
importance of non-HDL-C in residual CV risk, they also
agreed that TG also play a part, since TG levels are closely
related to VLDL-C and IDL-C levels. Similarly, while there
was no consensus on the value of TG levels in diagnosis
and therapeutic decision-making, the panel agreed on the
need to consider treating hypertriglyceridemia in high-risk
patients with triglycerides >200 mg/dl (2.3 mmol/l), as rec-
ommended in the ESC/EAS guidelines.38 This suggests that
the lack of consensus on questions related to TG may be
due not to failure to appreciate their importance but to the
complications and limitations of their quantification.20,39 TG
levels vary considerably in a given individual, which makes
them difficult to interpret. A recurrent question is whether
they should be measured in a fasting or non-fasting state;
recent studies have confirmed that postprandial TG levels
may provide additional information on remnant cholesterol
and are thus a complementary parameter to fasting TG.20

The fact remains that experts tend to favor non-HDL-C,
which is easy to assess and levels of which provide an indi-
cert measurement of TG. It is also possible that the currently
available evidence is insufficiently robust to convince many
specialists of the importance of TG. In this context, it is
interesting to note that the role of TG as an independent
CV risk factor was also not consensual in a survey of Spanish
experts on atherogenic dyslipidemia.14

Another question on which consensus was not achieved
was whether the therapeutic goal should be an overall
reduction in lipid levels rather than specific values of the
different components of the lipid profile. The lack of consen-
sus on this point could have different interpretations. On
one hand, it could demonstrate recognition of the impor-
tance of the HDL-C fraction, levels of which are inversely
related to CV risk.39 On the other hand, it could be due to
a more theoretical consideration, the fact that the aim of
therapy is to reduce CV risk rather than to reduce levels of
risk markers. The target values established in the guidelines
for LDL-C and non-HDL-C are usually set in terms of the risk
level of the individual patient.19,27,28 These issues may have
raised doubts concerning the interpretation of this item in
the questionnaire, leading to diverse responses and hence
lack of consensus.

With regard to treatment, the panel were unanimous in
recognition of the importance of healthy lifestyles and in the
choice of statins as first-line lipid-lowering therapy in the
treatment of dyslipidemia in patients at high or very high
CV risk, as well as the addition of ezetimibe when target
LDL-C levels are not achieved. These responses are mostly
in line with the recommendations in the guidelines.19,25,29

The use of fibrates in the treatment of atherogenic dys-
lipidemia was also largely consensual. The panel recognized
that fibrates are indicated for reducing TG levels and that
associating fenofibrate with statins can be considered to
treat hypertriglyceridemia in high-risk patients and to treat
residual CV risk associated with atherogenic dyslipidemia
in diabetic patients. Fenofibrate presents a low risk of drug
interactions (it is a weak inhibitor of CYP2C19 and CYP2A6
and, at therapeutic levels, a moderate inhibitor of CYP2C9),
and has only a minimal effect on the glucuronidation of
statins; its safety has been demonstrated in intervention tri-
als. However, there was no consensus on whether fibrates,
particularly fenofibrate, should be used to treat residual CV
risk associated with atherogenic dyslipidemia. This apparent
discrepancy concerning the therapeutic value of fenofibrate
in the context of atherogenic dyslipidemia reflects the literature: the two main randomized trials on the efficacy of fenofibrate - Action to Control Cardiovascular Risk in Diabetes (ACCORD)40 and Fenofibrate Intervention and Event Lowering in Diabetes (FIELD)41 - were considered overall to be negative, neither reaching statistical significance with regard to their primary outcome, first occurrence of non-fatal myocardial infarction, non-fatal stroke, or death from CV causes in ACCORD and coronary events (coronary heart disease death or non-fatal myocardial infarction) in FIELD. Nevertheless, some secondary results of FIELD clearly favor the use of fenofibrate, notably significant reductions of 24% in non-fatal myocardial infarction and of 11% in total CV events.41–45 Furthermore, the proportion of subjects who began treatment with other lipid-lowering drugs such as statins was higher in the placebo group (17% vs. 8% in the fenofibrate group, p<0.0001), which may have masked the benefit of the experimental drug. In ACCORD, analysis of a subgroup with TG>204 mg/dl and HDL-C <34 mg/dl showed that fenofibrate was associated with a significant 31% reduction in the incidence of CV events.34,45,46 This analysis was prespecified in the ACCORD trial protocol.47 In addition, an extended follow-up of participants in ACCORD, the ACCORDION study, suggested a possible effect of fenofibrate: five years after the original trial ended, patients with atherogenic dyslipidemia treated with fenofibrate continued to have a lower rate of CV events compared to placebo (hazard ratio 0.73; 95% confidence interval 0.56–0.95).48 Finally, in a meta-analysis that included FIELD, ACCORD and three other randomized trials, fibrates reduced CV events by 30% compared to placebo in individuals with atherogenic dyslipidemia (p<0.0001).49 All these results demonstrate the importance of fibrates, especially fenofibrate, in the treatment of patients with a phenotype consistent with atherogenic dyslipidemia. The addition of fibrates to first-line treatment in these individuals is already considered in some of the guidelines, albeit somewhat cautiously in view of the lack of randomized clinical trials specifically designed for populations with atherogenic dyslipidemia.19,19,23,27,50

Surprisingly, consensus was not achieved concerning the beneficial effects of fibrates on microvascular complications in diabetic patients, with only 59.4% of the experts surveyed in the range of agreement (7–9). However, the evidence appears to be clear on this point, showing that fibrates improve or at least slow the development of retinopathy and albuminuria.42–46 This results highlight the importance of dissemination of research and of continuing professional education for practicing physicians, in order to ensure that they remain up-to-date with current knowledge and that their clinical practice remains compatible with the best available evidence.

The treatment algorithm proposed by the scientific committee was based on the state of the art and on the responses of the expert panel. It is generally in agreement with the guidelines referred to above with regard to the importance of a healthy lifestyle as an essential component of therapy, the use of statins as first-line lipid-lowering therapy in patients at high or very high CV risk, assessment of LDL-C levels as the primary therapeutic target, and the need to review statin therapy and adherence to therapy, and possibly to add ezetimibe or PCSK9 inhibitors when LDL-C goals are not achieved.19,29–28,50 Adding fenofibrate to statins is, as stated above, considered in some of the guidelines, although the recommendation is not unequivocal. However, the committee considered that there is sufficient evidence to justify recommending this association as the best available alternative in individuals at high or very high CV risk and with atherogenic dyslipidemia which persists despite statin therapy.40,46,48 Moreover, fenofibrate is the only fibrate approved by the European Medicines Agency as an adjuvant to dietary changes or other non-pharmacological measures to treat mixed hyperlipidemia in patients at high CV risk, together with statins, when TG and HDL-C levels are not adequately controlled. In addition, unlike gemfibrozil, fenofibrate does not interact significantly with statins, which appears to explain the lower risk of muscle complaints with the combination of fenofibrate and a statin compared to gemfibrozil plus a statin.19

The development and implementation of a treatment algorithm for patients with atherogenic dyslipidemia is essential to standardize clinical practice and to ensure that this condition is properly identified and treated. This should reduce residual CV risk and hence associated morbidity and mortality. The Latin American Academy for the Study of Lipids (ALALIP) recently published a consensus document recommending a very similar treatment algorithm for patients with atherogenic dyslipidemia, with the difference of considering the addition of omega-3 fatty acids, as well as fibrates, to therapy when target non-HDL-C have not been achieved.19

Conclusions

The Portuguese experts involved in this study were shown to be familiar with the importance of atherogenic dyslipidemia in the context of CV risk, particularly with regard to the definition of the condition and its association with other morbidities (especially metabolic disorders), the fact that atherogenic dyslipidemia is underdiagnosed and hence undertreated, the importance of LDL-C and non-HDL-C as risk indicators and therapeutic targets, the role of a healthy lifestyle as an essential component of treatment of dyslipidemia, the use of statins as first-line lipid-lowering therapy in individuals at high or very high CV risk, and awareness that combined fenofibrate and statins can be used to treat residual CV risk associated with atherogenic dyslipidemia in diabetic patients. However, despite the evidence in the literature, there was clearly some uncertainty about the role of TG as a risk marker and in therapeutic choices, and the therapeutic value of fibrates in the treatment of atherogenic dyslipidemia and in the prevention of microvascular complications in diabetic patients. While the first of these questions may arise because non-HDL-C is seen to be more important than TG, the doubts concerning fibrates appear to be mainly related to the interpretation and/or relevance of the available evidence.

In light of these findings, the scientific committee considers it essential to promote awareness of atherogenic dyslipidemia and associated CV risk, as well as dissemination of research and implementation of measures designed to improve identification and appropriate treatment of this condition. Thus, based on the information in the literature and on the responses to the questionnaire, the CODAP
scientific committee present a proposed treatment algo-
rithm that highlights the use of statins as first-line therapy,
assessment of LDL-C levels as the primary therapeutic tar-
get, screening for the atherogenic dyslipidemia phenotype,
and the addition of fenofibrate when it is diagnosed. It is
hoped that this algorithm will function as a starting point
for standardization and improvement of clinical practice in
the treatment of atherogenic dyslipidemia in Portugal, and
will thus help to reduce morbidity and mortality associated
with CVD.

Conflicts of interest

AMS has received honoraria and consulting fees from Amgen,
AstraZeneca, Jaba-Recordati, Merck, Mylan, Novartis and
Tecnimedeco. CA has received honoraria from Abbott, Amgen,
Bial-Portela, JABA-Recordati, Merck Sharp & Dohme, Mylan,
Sanofi-Regeneron and Tecnimedeco. JSD has received hono-
raria for lectures and clinical trials from Bial, Boehringler
Ingelheim, JABA-Recordati, Merck Sharp & Dohme Portugal,
Novo Nordisk, Novartis, Amgen, Sanofi and Tecnimedeco. PMS
has received honoraria for lectures or consulting fees from
Bayer, JABA-Recordati, Merck Sharp & Dohme Portugal, Kowa
Pharmaceuticals, Novartis, Daiichi Sankyo, Amgen, Sanofi-
Regeneron and Tecnimedeco.

Acknowledgments

This study was supported by Tecnimedeco, who contracted
Springer Healthcare Communications for development and
supervision of the project, writing up, and remuneration for
the scientific committee and members of the expert panel
for their intellectual contributions. Tecnimedeco had no influence
on the design or development of the survey, selection of
the expert panel, or interpretation of the results.

The authors would like to thank Catarina L. Santos, who assisted
with medical editing, all the physicians who made up the expert panel, who gave up their time to respond to the
questionnaire, (Abilio Malheiro, António Ferreira, Carlos
Catarino, Davide Carvalho, Diogo Cruz, Elisabete Rodrigues,
Elsa Gaspar, Evangelista Rocha, Francisco Araújo, Isabel
Nazaré Santos, Isabel Palma, João Porto, João Raposo, Jorge
Dores, José Augusto Simões, José Augusto Varandas, José
Mendonça, José Pereira de Moura, José Silva Nunes, Luis
Andrade, Luísa Maria Sá, Manuela Fiuza, Manuela Silva Melo,
Maria Helena Ramos, Mariana Monteiro, Mário Lázaro, Nelson
Rodrigues, Paulo Santos, Pedro Monteiro, Pedro von
Haef, Ricardo Fontes Carvalho, Roberto Palma Reis, Rui Car-
valho and Vitor Ramalhinho).

References

Publishing; 2017, http://dx.doi.org/10.1787/health_glance-
2017-en.
2. Instituto Nacional de Estatística, Available from: Causas de
3. Dahlöf B. Cardiovascular disease risk factors: epidemiology and
risk assessment. Am J Cardiol. 2010;105 1 SUPPL:3A–9A.
ovascular risk in 2013: what have we learned? Cardiovasc Diabetol.
7. Xiao C, Dash S, Morgantini C, et al. Pharmacological target-
ing of the atherogenic dyslipidemia complex: the next frontier
in CVD prevention beyond lowering LDL cholesterol. Diabetes.
2016;65:1767–78.
ment of atherogenic dyslipidemia in the primary prevention
of cardiovascular disease in Europe: EURIKA, a cross-sectional
in statin-treated patients and predictors of LDL-cholesterol goal
achievement in clinical practice in Europe and Canada. Eur J
10. Marques Da Silva P, Cardoso SM. Anomalias lipídicas persistentes
em doentes tratados com estatinas: resultados portugueses do
estudo internacional de dislipidemia (DYSIS). Rev Port Cardiol.
value attainment and lipid-lowering therapy in patients with
stable or acute coronary heart disease: results from the
Dyslipidemia International Study II. Atherosclerosis. 2017;266:
158–66.
 reports/MR1269.html.
for reporting exercise programmes: protocol for a modified Del-
Consenso de expertos sobre propuestas para la mejora del
manejo de la dislipemia aterogénica. Rev Española Cardiol.
2014;67:36–44.
evidence on reducing macrovascular risk in patients with
atherogenic dyslipidemia: a report from an expert consensus
meeting on the role of fenofibrate-statin combination therapy.
Atheroscler Suppl. 2015;19:1–12.
16. Grupo de trabajo de Dislipemia Aterogénica de la Sociedad
Española de Arteriosclerosis y Grupo Europeo de Expertos.
Recomendaciones prácticas para el manejo del riesgo cardio-
vascular asociado a la dislipemia aterogénica, con especial
atenCIÓN al riesgo residual. Adaptación española de un Con-
senso Europeo de Expertos. Clin e Investig en Arterioscler.
ing and treating cardiovascular risk, with a focus on residual risk
associated with atherogenic dyslipidaemia. Eur Hear Journal,
ogenic dyslipidemia in latin America: prevalence, causes and
lines for the Management of Dyslipidaemias: the Task Force
for the Management of Dyslipidaemias of the European Society
of Cardiology (ESC) and European Atherosclerosis Society (EAS)
Developed with the special contribution of the European Asso-
ciation for Cardiovascular Prevention & Rehabilitation (EACPR).
20. Fruchart JC, Sacks F, Hermans MP, et al. The residual risk reduc-
tion initiative: a call to action to reduce residual vascular
risk in patients with dyslipidemia. Am J Cardiol. 2008;102 10
SUPPL:319–35.