EDITORIAL COMMENT

Strategies for reducing cardiovascular mortality should go beyond control of classic risk factors

As estratégias para a redução da mortalidade cardiovascular devem ir além do controlo dos clássicos fatores de risco

Marcus Vinícius Bolivar Malachias

Faculdade Ciências Médicas de Minas Gerais, Fundação Educacional Lucas Machado, Belo Horizonte, MG, Brazil

Available online 13 April 2019

Cardiovascular disease (CVD), especially myocardial infarction and stroke, is the leading cause of death worldwide.1 In Portuguese-speaking countries (PSCs), ischemic heart disease is the leading cause of death, followed by cerebrovascular disease, with the exception of Mozambique and São Tomé and Príncipe, where this order is reversed. It has been demonstrated that the most important risk factors for CVD in the PSCs are hypertension and diet.2

The paper by Villela et al. published in this issue of the Journal reveals that mortality due to CVD, especially cerebrovascular and hypertensive disease, is inversely related to the Human Development Index (HDI) of Brazil’s federative units (the 26 states plus the Federal District of the capital, Brasília), and to supplementary health coverage (private health insurance), probably reflecting the impact of socioeconomic inequality.

Brazil, with its area of 8.5 million km², more than 207 million inhabitants, and 27 federative units, is the largest PSC, and presents enormous social, economic, cultural, ethnic and geographical diversity.3 These inequalities indicate that there is not in fact one single Brazil but many, and there are similar disparities between the PSCs, which, although they share the same history and language, have extremely diverse socioeconomic levels and health indicators.

Some regions of Brazil present high levels of socioeconomic development, such as the Federal District, which has a similar HDI to that of Portugal, but economically poor states such as Alagoas, Maranhão and Piauí have HDIs closer to those of Cape Verde, East Timor and Equatorial Guinea.2,3,5,6 Although there no Brazilian regions with HDIs as low as PSCs such as Mozambique and Guinea-Bissau,3,6 the demonstration of a correlation between cardiovascular mortality in Brazil and its socioeconomic indicators3,6 should be a stimulus for improving our understanding of the determinants of CVD that go beyond the classic risk factors, a task that is relevant not only for Brazil or the PSCs, but for the whole world.

The Prospective Urban and Rural Epidemiological (PURE) study, which assessed healthy lifestyles among individuals with CVD in 628 urban and rural communities in 17 countries, demonstrated that the prevalence of risk factors is highest in high-income countries, intermediate in middle-income countries, and lowest in low-income countries. However, although the risk factor burden was lowest in low-income countries, the rates of major CVD and death were substantially higher in low-income than in high-income countries.7 In addition, it has been shown that the availability and use of medication, such as that established for secondary prevention of cardiovascular disease, is alarmingly low worldwide, but predominantly in low-income regions. In many countries with the lowest use, pro-rich inequality is greatest.8

The challenge of containing the progress of CVD is complex. It has been established that many different factors need to be controlled,9 including behavioral (smoking, diet,
physical activity), biological (hypertension, hypercholes-
terolemia, diabetes), psychosocial (depression, anxiety, 
acute and chronic life stressors, lack of social support), 
health systems (access to care, screening, diagnosis, quality 
of care), environmental (pollution control, water treat-
ment), intersectoral (tobacco control policies, agricultural 
policies, food labeling), and information (health education, 
multilevel communication).10

The recently published First Brazilian Registry of Hypertension11 show that the results of the various hyper-
tension control strategies in the country have been good, 
with 60.6% of patients treated in tertiary cardiology centers 
meeting target blood pressure levels (below 140/90 mmHg), 
although it does not reflect the entire hypertensive popu-
lation of the country. Even so, mortality from CVD in Brazil 
remains alarmingly high.6

The path to improving global cardiovascular health 
involves multiple and complex strategies, but as demon-
strated in the article by Villela et al.3 assessing conditions in 
Brazil, it appears above all to involve reducing regional 
inequalities and improving the social and economic condi-
tions of the population.

Conflicts of interest

The author has no conflicts of interest to declare.

References

1. World Health Organization (WHO). Global action plan for 
the prevention and control of noncommunicable diseases 2013-
2020. Geneva (Switzerland); 2013.

Disease Epidemiology in Portuguese-Speaking Countries: data 
from the Global Burden of Disease, 1990 to 2016. Arq Bras Cardi-

3. Villela PB, Klein CH, Oliveira GMM. Socioeconomic factors and 
mortality due to cerebrovascular and hypertensive disease in 

4. Brazilian Institute of Geography and Statistics/Instituto 
Brasileiro de Geografia e Estatística/(IBGE). Accessed 

5. United Nations Development Programme. Human Develop-
ment Reports. Accessed 27/10/2018. Available from: 

6. United Nations Development Programme, Instituto de Pesquisa 
Econômica Aplicada, Fundação João Pinheiro. Atlas do Desen-

7. Ribeiro AL, Duncan BB, Brant LC, et al. Cardiovascular health in 

8. Yusuf S, Rangarajan S, Teo K, et al. Cardiovascular risk and 
events in 17 low-, middle-, and high-income countries. N Engl J 

use of secondary prevention of cardiovascular disease by socio-
economic status: evidence from the PURE observational study. 

10. Institute of Medicine (US) Committee on Preventing the Global 
Epidemic of Cardiovascular Disease: Meeting the Challenges 
in Developing Countries; Fuster V, Kelly BB, editors. Promo-
ting Cardiovascular Health in the Developing World: A Critical 
Academies Press (US); 2010.

11. Lopes RD, Barroso WKS, Brandao AA, et al. The First Brazilian 