Journal Information
Vol. 36. Issue 6.
Pages 475.e1-475.e3 (June 2017)
Share
Share
Download PDF
More article options
Visits
4737
Vol. 36. Issue 6.
Pages 475.e1-475.e3 (June 2017)
Case report
Open Access
Successful percutaneous closure of a residual atrial septal defect due to device failure
Encerramento percutâneo de comunicação interauricular residual por falência de dispositivo
Visits
4737
Sílvia Aguiar Rosaa,
Corresponding author
silviaguiarosa@gmail.com

Corresponding author.
, Filipa Ferreirab, Lídia de Sousaa, António Fiarresgaa, José Diogo Martinsc, Ana Galrinhoa, Ana Agapitoa, Paula Fazendasb, Fátima F. Pintoc, Rui Cruz Ferreiraa
a Cardiology Department, Santa Marta Hospital, Lisbon, Portugal
b Cardiology Department, Garcia de Orta Hospital, Almada, Portugal
c Paediatric Cardiology Department, Santa Marta Hospital, Lisbon, Portugal
This item has received

Under a Creative Commons license
Article information
Abstract
Full Text
Bibliography
Download PDF
Statistics
Figures (1)
Abstract

A 39-year-old woman underwent uneventful percutaneous occlusion of an ostium secundum atrial septal defect (ASD) with a 22 mm Ultrasept ASD Occluder®. Transesophageal echocardiography (TEE) performed two years after implantation revealed a de novo residual left-to-right shunt through the correctly implanted device. Three-dimensional transesophageal echocardiography (3D TEE) further clarified this finding by showing a perforation of the device membrane coating. The patient underwent transcatheter closure of the residual shunt with a 20 mm Ultrasept PFO® device. The procedure was guided by fluoroscopy and real-time 3D TEE. At the end of the procedure 3D TEE documented correct device deployment with complete defect coverage and absence of residual shunt.

Keywords:
Atrial septal defect
Residual shunt
Percutaneous intervention
Resumo

Doente de 39 anos, género feminino, foi submetida com sucesso a encerramento percutâneo de comunicação interauricular do tipo ostium secundum com dispositivo Ultrasept Atrial Septal Defect Occluder® de 22 mm. O ecocardiograma transesofágico, realizado dois anos após implantação, revelou shunt esquerdo-direito residual de novo através do dispositivo corretamente implantado. O ecocardiograma transesofágico tridimensional (ETE3D) objetivou uma perfuração do revestimento do dispositivo. A doente foi submetida a encerramento percutâneo do shunt residual com dispositivo UltraSept PFO Occluder® de 20 mm. O procedimento foi guiado por fluoroscopia e ETE3D. No final do procedimento por ETE3D, foi documentado o correto posicionamento do dispositivo, com completa cobertura da perfuração e ausência de shunt residual.

Palavras-chave:
Comunicação interauricular
Shunt residual
Intervenção percutânea
Full Text
Case report

A 39-year-old woman presented for percutaneous closure of an ostium secundum atrial septal defect (ASD) with a balloon-sized diameter of 21 mm, which was performed successfully using a 22 mm Ultrasept ASD Occluder® (Cardia, Eagan, MN, USA) with no complications, under fluoroscopic and transesophageal echocardiography (TEE) guidance. The day after the procedure, transthoracic echocardiography (TTE) showed a correctly placed device with no residual shunt. Two years after the procedure, TTE followed by TEE revealed a residual left-to-right shunt through the correctly implanted device. Three-dimensional (3D) TEE enabled more detailed characterization, showing a perforation of the membrane coating 0.09 cm2 in area on the inferior portion of the device (Figure 1A and D). Although there were no obvious signs of right ventricular overload, the patient complained of fatigue on minimal exertion and occasional chest discomfort.

Figure 1.

(A and D) Three- (3D TEE) and two-dimensional transesophageal echocardiography images showing residual shunt through the device (22 mm Ultrasept ASD Occluder®); (B and C) delivery sheath through the Ultrasept device in fluoroscopic view and in 3D TEE; (E and F) closure of residual shunt in the 22 mm Ultrasept device with a 20 mm Ultrasept PFO device, with the final result documented in fluoroscopic view and in 3D TEE.

(0.51MB).

She accordingly underwent a second cardiac catheterization for hemodynamic measurement and possible transcatheter closure of the residual shunt. The procedure was performed under general anesthesia, guided by fluoroscopy and real-time 3D TEE (Figure 1B, C, E and F). The Qp:Qs obtained by catheterization was 1.7 and therefore we decided to proceed with implantation of a second device. We chose a 20 mm Ultrasept PFO occluder with the expectation that a similar device would conform better to the previously implanted occluder.

The device defect was crossed with a combination of a 6 F right Judkins diagnostic catheter (Boston Scientific, Natick, MA) and a standard 0.35″ ZIPwire™ Hydrophilic Guide Wire (Boston Scientific, Natick, MA) placed in the left superior pulmonary vein. We opted not to perform balloon sizing; otherwise the interventional procedure was performed with the standard ASD closure technique, taking extra care with the 9 F delivery sheath to avoid displacement of the device already in place.

During the procedure, 3D TEE was of crucial importance in guiding the position of guidewires and sheaths, delivery and spatial relations between devices.

The procedure took 60 min with a total radiation time of 14 min and total radiation dose of 865 mGy (8101 cGy.cm2).

At the end of the procedure 3D TEE documented correct device placement with complete defect coverage and absence of residual shunt.

Discussion

The Ultrasept ASD device is covered by a polyvinyl alcohol (PVA) membrane. PVA is a bioabsorbable elastomeric polymer with good biocompatibility that is commonly used in medical devices due to its low protein adsorption, absence of toxicity and bioadhesive characteristics. Although the use of this material in ASD closure devices is generally successful, a few cases of PVA membrane perforation and recanalization have been described recently.1,2 According to company data only 10 cases have been reported, all of them with ASD occluders and none with PFO closure devices. The mechanism by which the PVA coating degrades is not completely understood, but is likely related to incomplete endothelialization due to delayed or inadequate endothelial response.3 This phenomenon has been reported in a few patients with other ASD devices, such as the Amplatzer™ family, supporting the hypothesis of an absent or inadequate endothelization response in specific patients, of unknown cause.3,4 In our patient, there was no evidence of an early residual shunt, but we cannot speculate on the specific causes that may have given rise to this mid-term residual ASD.

We adopted a percutaneous approach guided by real-time 3D TEE, which offered precise spatial location of the perforation and orientation of sheaths and devices. A 20 mm Ultrasept PFO occluder was chosen because (a) it appeared to be the most easily adjustable for the small but asymmetric hole, (b) no residual holes have been reported in these devices, (c) we thought that it would be better to juxtapose two devices with the same type of frame, and (d) it has a low profile, resulting in a small increase in thickness and no compression of surrounding structures, particularly the aortic wall.

This case highlights the importance of close follow-up in all patients with ASD treated with implanted devices. There should be a low threshold for TEE in the event of any suspicious findings on TTE or changes in the patient's clinical status. Our case demonstrates a new and successful way of correcting ASD device perforations with a percutaneous approach that avoids the need for surgical intervention.

Ethical disclosuresProtection of human and animal subjects

The authors declare that no experiments were performed on humans or animals for this study.

Confidentiality of data

The authors declare that they have followed the protocols of their work center on the publication of patient data.

Right to privacy and informed consent

The authors have obtained the written informed consent of the patients or subjects mentioned in the article. The corresponding author is in possession of this document.

Conflicts of interest

The authors have no conflicts of interest to declare.

References
[1]
P. Aubry, E. Brochet, X.H. du Fretay, et al.
Early malfunction of polyvinyl alcohol membrane-covered atrial septal defect closure devices.
Circ Cardiovasc Interv, 7 (2014), pp. 721-722
[2]
T. Bartel, N. Bonaros, S. Müller.
Device failure weeks to months after transcatheter closure of secundum type atrial septal defects.
[3]
F. Chen, X. Zhao, X. Zheng, et al.
Incomplete endothelialization and late dislocation after implantation of an Amplatzer septal occluder device.
Circulation, 124 (2011), pp. e188-e189
[4]
M.O. Vogt, A. Kühn, J. Hörer, et al.
Clinical, echocardiographic and histopathologic findings in nine patients with surgically explanted ASD/PFO devices: do we know enough about the healing process in humans?.
Int J Cardiol, 147 (2011), pp. 398-404
Copyright © 2017. Sociedade Portuguesa de Cardiologia
Idiomas
Revista Portuguesa de Cardiologia (English edition)
Article options
Tools
en pt

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos

By checking that you are a health professional, you are stating that you are aware and accept that the Portuguese Journal of Cardiology (RPC) is the Data Controller that processes the personal information of users of its website, with its registered office at Campo Grande, n.º 28, 13.º, 1700-093 Lisbon, telephone 217 970 685 and 217 817 630, fax 217 931 095, and email revista@spc.pt. I declare for all purposes that the information provided herein is accurate and correct.